Exceptional point contours in periodic unitary and thermal dynamics
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Introduction

We investigated the dynamics of a qubit undergoing periodic evolution on a two-dimensional
temporal space, that is part thermal and part unitary. Properties of such evolution can be
studied via Non-Hermitian Floguet Hamiltonians that can be in the P7T-symmetric or P77 -
broken phases. \WWe map out the phase diagram of the system, along with the exceptional point
(EP) contours through analytical and numerical methods. We analyse the system analytically
for N-cycles to observe the stroboscopic behaviour through the effective Floguet Hamiltonian.
Our results suggest that dynamics in unitary and thermal systems are a new avenue to realize
EP degeneracies.

Model

Exceptional point contours (Square Wave)

Hi(t) = J(oy  Ho(t) = t7(t)os (1)

This is our Non-Hermitian Floguet Hamiltonian where J(t) and ~(t) are arbitrary functions of time.
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Figure 1. (i) and (ii) are representing the time-dependent Non-Hermitian Floquet model which oscillates between
H, and H, with time-period T.

(iii) Represents the two-dimensional temporal space where, the horizontal axis is the real time unit 7, and the
vertical axis is the imaginary time unit 5.

7 - Real time unit
£ - Imaginary time unit

U- - Unitary Evolution
Uﬁ - Thermal Evolution

T T
Ur = exp{wx /Op J(t)dt} Ug = GXp{O'Z /T ”y(t)dt} (3)
p

Numerical Results
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Exceptional point contours (Sinusoidal Wave)

Analytical Results

= The exceptional point contours for the square wave
B cosh™1 (| sec( fupT)|)

PT-Symmetric region is where the eigenvalues of UgU; are unity.
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Note : f, is defined as an areal factor, which is identity for Square Wave and — for
T
Sinusoidal Wave.
Effective Floquet Hamiltonian
The effective Floguet Hamiltonian along the EP lines
1
Hp = T tan(27J)o, + %sinh@ﬁv) sin(27J)oy + %tanh(Qﬁ*y)az (8)
Evolution for N periods,
G =1— \NHpT = En(T) (%)
Let |¢)) be the initial state, evolving it through N times,
(| BY(T)En(T) [¢) = 1+ (NT)A + (N*T?) B (10)

A= ()| H} — Hp |4

B = (| HL.Hp [¢))

Discussion

= Analysed the time-independent parameters.

= Explored the time-dependent sinusoidal behaviour.

= Hp can be used to study the stroboscopic behaviour.

= These EP degeneracies can be verified experimentally in qubit platforms.

Future Prospects

= What will happen when we couple two qubits where the first qubit is undergoing unitary
evolution and the second qubit is going under thermal evolution?
For Example :
H=Jl®o;+1y0,®1+ Hy9 (11)

His is the interaction term.

= Will the dynamics of the system depend on the type of interaction?
= Do we expect higher order exceptional points?
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